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Climatic controls of decomposition drive the global 
biogeography of forest-tree symbioses
B. S. Steidinger1,15, t. W. Crowther2,15*, J. Liang3,4,15*, M. e. Van Nuland1, G. D. A. Werner5, P. B. reich6,7, G. J. Nabuurs8,182,  
S. de-Miguel9,10, M. Zhou3, N. Picard11, B. Herault12,13, X. Zhao4, C. Zhang4, D. routh2, GFBI consortium14 & K. G. Peay1*

The identity of the dominant root-associated microbial symbionts 
in a forest determines the ability of trees to access limiting 
nutrients from atmospheric or soil pools1,2, sequester carbon3,4 
and withstand the effects of climate change5,6. Characterizing the 
global distribution of these symbioses and identifying the factors 
that control this distribution are thus integral to understanding 
the present and future functioning of forest ecosystems. Here we 
generate a spatially explicit global map of the symbiotic status of 
forests, using a database of over 1.1 million forest inventory plots 
that collectively contain over 28,000 tree species. Our analyses 
indicate that climate variables—in particular, climatically 
controlled variation in the rate of decomposition—are the 
primary drivers of the global distribution of major symbioses. 
We estimate that ectomycorrhizal trees, which represent only 2% 
of all plant species7, constitute approximately 60% of tree stems 
on Earth. Ectomycorrhizal symbiosis dominates forests in which 
seasonally cold and dry climates inhibit decomposition, and is the 
predominant form of symbiosis at high latitudes and elevation. By 
contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm 
tropical forests, and occur with ectomycorrhizal trees in temperate 
biomes in which seasonally warm-and-wet climates enhance 
decomposition. Continental transitions between forests dominated 
by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively 
abruptly along climate-driven decomposition gradients; these 
transitions are probably caused by positive feedback effects between 
plants and microorganisms. Symbiotic nitrogen fixers—which 
are insensitive to climatic controls on decomposition (compared 
with mycorrhizal fungi)—are most abundant in arid biomes with 
alkaline soils and high maximum temperatures. The climatically 
driven global symbiosis gradient that we document provides a 
spatially explicit quantitative understanding of microbial symbioses 
at the global scale, and demonstrates the critical role of microbial 
mutualisms in shaping the distribution of plant species.

Microbial symbionts strongly influence the functioning of forest eco-
systems. Root-associated microorganisms exploit inorganic, organic2 
and/or atmospheric forms of nutrients that enable plant growth1, deter-
mine how trees respond to increased concentrations6 of CO2, regulate 
the respiratory activity of soil microorganisms3,8 and affect plant spe-
cies diversity by altering the strength of conspecific negative density 
dependence9. Despite the growing recognition of the importance of 
root symbioses for forest functioning1,6,10 and the potential to inte-
grate symbiotic status into Earth system models that predict functional 
changes to the terrestrial biosphere10, we lack spatially explicit quanti-
tative maps of root symbioses at the global scale. Quantitative maps of 
tree symbiotic states would link the biogeography of functional traits 

of belowground microbial symbionts with their 3.1 trillion host trees11, 
which are spread across Earth’s forests, woodlands and savannahs.

The dominant guilds of tree root symbionts—arbuscular mycorrhizal 
fungi, ectomycorrhizal fungi, ericoid mycorrhizal fungi and nitro-
gen-fixing bacteria (N-fixers)—are all based on the exchange of plant 
photosynthate for limiting macronutrients. Arbuscular mycorrhizal 
symbiosis evolved nearly 500 million years ago, and ectomycorrhizal, 
ericoid mycorrhizal and N-fixer plant taxa have evolved multiple times 
from an arbuscular-mycorrhizal basal state. Plants that are involved in 
arbuscular mycorrhizal symbiosis comprise nearly 80% of all terres-
trial plant species; these plants principally rely on arbuscular mycor-
rhizal fungi for enhancing mineral phosphorus uptake12. In contrast 
to arbuscular mycorrhizal fungi, ectomycorrhizal fungi evolved from 
multiple lineages of saprotrophic ancestors and, as a result, some ecto-
mycorrhizal fungi are capable of directly mobilizing organic sources 
of soil nutrients (particularly nitrogen)2. Associations with ectomycor-
rhizal fungi—but not arbuscular mycorrhizal fungi—have previously 
been shown to enable trees to accelerate photosynthesis in response 
to increased concentrations of atmospheric CO2 when soil nitrogen 
is limiting6, and to inhibit soil respiration by decomposer microor-
ganisms3,8. Because increased plant photosynthesis and decreased soil 
respiration both reduce atmospheric CO2 concentrations, the ecto-
mycorrhizal symbiosis is associated with buffering the Earth’s climate 
against anthropogenic change.

In contrast to mycorrhizal fungi, which extract nutrients from the 
soil, symbiotic N-fixers (Rhizobia and Actinobacteria) convert atmos-
pheric N2 to plant-usable forms. Symbiotic N-fixers are responsible for 
a large fraction of biological soil-nitrogen inputs, which can increase 
nitrogen availability in forests in which N-fixers are locally abundant13. 
Symbioses with either N-fixers or ectomycorrhizal fungi often demand 
more plant photosynthate than does arbuscular mycorrhizal symbio-
sis12,14,15. Because tree growth and reproduction are limited by access 
to inorganic, organic and atmospheric sources of nitrogen, the distri-
bution of root symbioses is likely to reflect environmental conditions 
that maximize the cost:benefit ratio of symbiotic exchange as well as 
physiological constraints on the different symbionts.

One of the earliest efforts16 to understand the functional bio-
geography of plant root symbioses categorically classified biomes by 
their perceived dominant mycorrhizal type, and hypothesized that  
seasonal climates favour hosts that associate with ectomycorrhizal fungi 
(owing to the ability of these hosts to compete directly for organic nitro-
gen). By contrast, it has more recently been proposed that sensitivity 
to low temperatures has prevented N-fixers from dominating outside 
of the tropics, despite the potential for nitrogen fixation to alleviate 
nitrogen limitation in boreal forests15,17. However, global-scale tests of 
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these proposed biogeographical patterns and their climate drivers are 
lacking. To address this, we compiled a global ground-sourced survey 
database to reveal the numerical abundances of each type of symbiosis 
across the globe. Such a database is essential for identifying the poten-
tial mechanisms that underlie transitions in forest symbiotic state along 
climatic gradients18,19.

We determined the abundance of tree symbioses using an extension 
of the plot-based Global Forest Biodiversity (GFB) database that we 
term the GFBi; this extended database contains over 1.1 million forest 
inventory plots of individual-based measurement records, from which 
we derive abundance information for entire tree communities (Fig. 1). 
Using published literature on the evolutionary histories of mycorrhizal 
and N-fixer symbioses, we assigned plant species from the GFBi to 
one of five root-associated symbiotic guilds: arbuscular mycorrhizal, 
ectomycorrhizal, ericoid mycorrhizal, N-fixer and weakly arbuscular 
or non-mycorrhizal. We then used the random-forest algorithm with 
K-fold cross-validation to determine the importance and influence of 
variables related to climate, soil chemistry, vegetation and topography 
on the relative abundance of each tree symbiotic guild (Fig. 2). Because 
decomposition is the dominant process by which soil nutrients become 
available to plants, we calculated annual and quarterly decomposition 
coefficients according to the Yasso07 model20, which describes how 
temperature and precipitation gradients influence mass-loss rates 
of different chemical pools of leaf litter (with parameters fit using a 
previous global study of leaf decomposition) (Fig. 3, Supplementary 
Fig. 5). Finally, we projected our predictive models across the globe 
over the extent of global biomes that fell within the multivariate distri-
bution of our model training data (Fig. 4, Supplementary Figs. 14, 15; 
see Methods for full description).

Our analysis shows that each one of the three most-numerically 
abundant guilds of tree symbiosis has a reliable environmental signa-
ture, with the four most-important predictors accounting for 81, 79 and 
52% of the total variability in relative basal area for ectomycorrhizal, 
arbuscular mycorrhizal and N-fixer symbioses, respectively. Given the 
relative rarity of ericoid mycorrhizal and weakly arbuscular or non- 
mycorrhizal symbiotic states among trees, models for these symbioses  
lack strong predictive power—although the raw data do identify 
some local abundance hotspots for ericoid mycorrhizal symbiosis 
(Supplementary Fig. 1). As a result, we focus on the three major tree 
symbiotic states (ectomycorrhizal, arbuscular mycorrhizal and N-fixer). 
Despite the fact that data from North America and South America 
constitute 65% of the training data (at the 1°-by-1° grid scale), our 
models accurately predict the proportional abundances of the three 
major symbioses across all major geographical regions (Supplementary 
Fig. 10). The high performance of our models—which is robust to 

K-fold cross-validation and to rarefying samples such that all conti-
nents are represented with equal depth (Supplementary Figs. 11, 12)— 
suggests that regional variations in climate (including indirect effects 
on decomposition) and soil pH (for N-fixers) are the primary factors 
that influence the relative dominance of each guild at the global scale;  
geographical origin explained only approximately 2–5% of the  
variability in residual relative abundance (Supplementary Table 8, 
Supplementary Fig. 10).

Whereas a recent global analysis of root traits concluded that plant 
evolution has favoured a reduced dependence on mycorrhizal fungi21, 
we find that trees that associate with the relatively more carbon- 
demanding and recently derived ectomycorrhizal fungi12,14 represent 
the dominant tree symbiosis. By taking the average proportion of ecto-
mycorrhizal trees, weighted by spatially explicit global predictions for 
tree stem density11, we estimate that approximately 60% of tree stems on 
earth are ectomycorrhizal—despite the fact that only 2% of overall plant 
species associate with ectomycorrhizal fungi (versus nearly 80% that 
associate with arbuscular mycorrhizal fungi)7. Outside of the tropics, 
the estimate for the relative abundance of ectomycorrhizal symbiosis 
increases to approximately 80% of trees.

Turnover among the major symbiotic guilds results in a tri-modal 
latitudinal abundance gradient, in which the proportion of ectomyc-
orrhizal trees increases (and the proportion of arbuscular mycorrhizal 
trees decreases) with distance from the equator and the upper quan-
tiles of nitrogen-fixing trees reach a peak in abundance in the arid 
zone at around 30° N or S (Figs. 3a and 4). These trends are driven by 
abrupt transitional regions along continental climatic gradients (Fig. 2), 
which skew the distribution of symbioses among biomes (Fig. 3a) and 
drive strong patterns across geographical and topographic features that 
influence climate. Moving north or south from the equator, the first 
transitional zone separates warm (aseasonal) tropical broadleaf forests 
dominated by arbuscular mycorrhizal symbiosis (>75% median basal  
area versus 8% for ectomycorrhizal trees) from the rest of the world forest  
system, which is dominated by ectomycorrhizal symbiosis (Figs. 2a, b 
and 3a). The transition zone occurs across the globe at around 25° N 
and S, just beyond the dry tropical broadleaf forests (which have 25% of 
their basal area consisting of ectomycorrhizal trees) (Fig. 3a) in which 
average monthly temperature variation reaches 3–5 °C (temperature 
seasonality) (Fig. 2a, b).

Moving further north or south, the second transitional climate zone 
separates regions in which decomposition coefficients during the 
warmest quarter of the year are less than two (Fig. 3b gives the asso-
ciated temperature and precipitation ranges). In North America and 
China, this transition zone occurs around 50° N, and separates the 
mixed arbuscular mycorrhizal and ectomycorrhizal temperate forests 

Fig. 1 | The global distribution of GFBi training data. The global map 
has n = 2,768 grid cells at a resolution of 1° × 1° latitude and longitude. 
Cells are coloured in the red, green and blue spectrum according to 

the percentage of total tree basal area occupied by N-fixer, arbuscular 
mycorrhizal (AM) and ectomycorrhizal (EM) tree symbiotic guilds, as 
indicated by the ternary plot.
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from their neighbouring ectomycorrhizal-dominated boreal forests 
(75 and 100% of their basal area, respectively, consisting of ectomy-
corrhizal trees) (Fig. 3a). This transitional decomposition zone is not 
present in western Europe, which has a temperature seasonality of 
>5 °C but lacks sufficiently wet summers to accelerate decomposition 
coefficients beyond the values that are associated with mixed arbuscular 
mycorrhizal and ectomycorrhizal forests. The latitudinal transitions in 
symbiotic state observed among biomes are mirrored by within-biome 
transitions along elevation gradients. For example, in tropical Mexico 
decomposition coefficients of less than two during the warmest and 
wetter quarters of the year occur along the slopes of the Sierra Madre, 

where a mixture of arbuscular-mycorrhizal and N-fixer woodlands 
in arid climates transition to ectomycorrhizal-dominated tropical 
coniferous forests (75% basal area) (Figs. 3a and 4a–c, Supplementary 
Figs. 16–18). The Southern Hemisphere—which lacks the landmass 
to support extensive boreal forests—experiences a similar latitudinal 
transition in decomposition rates along the ecotone that separates its 
tropical and temperate biomes, at around 28° S.

The abrupt transitions that we detected between forest symbiotic 
states along environmental gradients suggest that positive feedback 
effects may exist between climatic and biological controls of decom-
position10,20. In contrast to arbuscular mycorrhizal fungi, some 

Fig. 2 | A small number of environmental variables predict the majority 
of global turnover in forest symbiotic status. a–c, Partial feature 
contributions of different environmental variables to forest symbiotic 
state. Each row plots the shape of the contribution of the four most-
important predictors of the proportion of tree basal area that belongs 
to the ectomycorrhizal (a), arbuscular mycorrhizal (b) and N-fixer (c) 
symbiotic guilds (n = 2,768). Variables are listed in declining importance 
from left to right, as determined by the increase in node purity (inc. node 
purity), and with points coloured with a red to green to blue gradient 

according to their position on the x axis of the most-important variable 
(left-most panels for each guild), allowing cross-visualization between 
predictors. Each panel lists two measures of variable importance; inc. node 
purity (used for sorting) and percentage increase in mean square error (% 
inc. MSE) (see Supplementary Information). The abundance of each type 
of symbiont transitions sharply along climatic gradients, which suggests 
that sites near the threshold are particularly vulnerable to switching their 
dominant symbiont guild as climate changes. Warmest and wettest quarter, 
the warmest and wettest quarters of the year, respectively.

Fig. 3 | The distribution of forest symbiotic status across biomes 
is related to climatic controls over decomposition. a, Biome level 
summaries of the median ± 1 quartile of the predicted percentage of  
tree basal area per biome for ectomycorrhizal, arbuscular mycorrhizal  
and N-fixer symbiotic guilds (n = 100 random samples per biome).  
b, The dependency of decomposition coefficients (k, solid and dotted 
lines; in the region between the solid lines, the model transitions abruptly 

between dominant symbiotic status) on temperature and precipitation 
during the warmest quarter with respect to predicted dominance of 
mycorrhizal symbiosis. The transition from arbuscular mycorrhizal forests 
to ectomycorrhizal forests between k = 1 and k = 2 is abrupt, which is 
consistent with positive feedback between climatic and biological controls 
of decomposition.
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ectomycorrhizal fungi can use oxidative enzymes to mineralize organic 
nutrients from leaf litter and convert nutrients to plant-usable forms2,5. 
Relative to arbuscular mycorrhizal trees, the leaf litter of ectomycor-
rhizal trees is also chemically more resistant to decomposition, and 
has higher C:N ratios and higher concentrations of decomposition- 
inhibiting secondary compounds10. Thus, ectomycorrhizal leaf  
litter can exacerbate climatic barriers to decomposition and promote  
conditions in which ectomycorrhizal fungi have nutrient-acquiring 
abilities that are superior to those of arbuscular mycorrhizal fungi5,10. A 
recent game-theoretical model has shown that positive feedback effects 
between plants and soil nutrients can lead to local bistability in myc-
orrhizal symbiosis22. Such positive feedback effects are also known 
to cause abrupt ecosystem transitions along smooth environmental 
gradients between woodlands and grasses: trees suppress fires (which 
promotes seedling recruitment), whereas grass fuels fires that kill 
tree seedlings23. The existence of abrupt transitions also suggests that  
forests in transitional regions along decomposition gradients should 
be susceptible to marked turnover in symbiotic state with future  
environmental changes23.

To illustrate the sensitivity of global patterns of tree symbiosis to 
climate change, we use the relationships that we observed for current 
climates to project potential changes in the symbiotic status of forests 
in the future. Relative to our global predictions that use the most-recent 

climate data, model predictions that use the projected climates for 2070 
suggest that the abundance of ectomycorrhizal trees will decline by as 
much as 10% (using a relative concentration pathway of 8.5 W per m2) 
(Supplementary Fig. 24). Our models predict that the largest declines 
in ectomycorrhizal abundance will occur along the boreal–temperate 
ecotone, where small increases in climatic decomposition coefficients 
cause abrupt transitions to arbuscular mycorrhizal forests (Fig. 2a, b). 
Although our model does not estimate the time lag between climate 
change and forest community responses, the predicted decline in ecto-
mycorrhizal trees corroborates the results of common garden transfer 
and simulated warming experiments, which have demonstrated that 
some important ectomycorrhizal hosts will decline at the boreal– 
temperate ecotone under altered climate conditions24.

The change in dominant nutrient-exchange symbioses along  
climate gradients highlights the interconnection between atmospheric 
and soil compartments of the biosphere. The transition from arbus-
cular mycorrhizal to ectomycorrhizal dominance corresponds with 
a shift from phosphorus to nitrogen limitation of plant growth with 
increasing latitude25,26. Including published global projections of total 
soil nitrogen or phosphorus, microbial nitrogen or soil phosphorus 
fractions (labile, occluded, organic and apatite) did not increase the 
amount of variation explained by the model, or alter the variables iden-
tified as most important; we therefore dropped these projections from 
our analysis. However, our finding that climatic controls of decom-
position are the best predictors of dominant mycorrhizal associations 
provides a mechanistic link between symbiont physiology and climatic 
controls on the release of soil nutrients from leaf litter. These findings 
are consistent with Read’s hypothesis16 that slow decomposition at 
high latitudes favours ectomycorrhizal fungi owing to their increased 
capacity to liberate organic nutrients2. Thus, although more experi-
ments are necessary to understand the specific mechanism by which 
nutrient competition favours the dominance of arbuscular mycorrhizal 
or ectomycorrhizal symbioses18, we propose that the latitudinal and 
elevational transitions from arbuscular-mycorrhizal-dominated to 
ectomycorrhizal-dominated forests be named ‘Read’s rule’.

Our analyses focus on prediction at large spatial scales that are appro-
priate to the available data, but our findings with respect to Read’s rule 
also provide insight into how soil factors structure the fine-scale distri-
butions of tree symbioses within our grid cells. For example, at a coarse 
scale, we find that ectomycorrhizal trees are relatively rare in many wet 
tropical forests; however, individual tropical sites in our raw data span 
the full range from 0 to 100% basal area dominated by ectomycorrhizal 
trees. In much of the wet tropics, these ectomycorrhizal-dominated 
sites exist as outliers within a matrix of predominantly arbuscular 
mycorrhizal trees. In an apparent exception that proves Read’s rule, in 
aseasonal, warm neotropical climates—which accelerate leaf decom-
position and promote the regional dominance of arbuscular mycor-
rhizal symbiosis (Fig. 3)—ectomycorrhizal-dominated tree stands can 
develop in sites in which poor soils and recalcitrant litter slow the rates 
of decomposition and nitrogen mineralization18,27. Landscape-scale 
variation in the relative abundance of symbiotic states also changes 
along climate gradients: variability is highest in xeric and temperate 
biomes (Supplementary Figs. 3, 4), which suggests that the potential of 
local nutrient variability to favour particular symbioses is contingent 
on climate.

Whereas ectomycorrhizal trees are associated with ecosystems in 
which plant growth is thought to be primarily nitrogen-limited, N-fixer 
trees are not. Our results highlight the global extent of the apparent 
‘nitrogen cycling paradox’ in which some metrics suggest that nitrogen 
limitation is greater in the temperate zone25,26 and yet nitrogen-fixing 
trees are relatively more common in the tropics15,28 (Fig. 3a). We find 
that N-fixers—which we estimate represent 7% of all trees—dominate 
forests with annual maximum temperatures >35 °C and alkaline soils, 
particularly in North America and Africa (Fig. 2c). N-fixers have the 
highest relative abundance in xeric shrublands (24%), tropical savan-
nahs (21%) and dry broadleaf forest biomes (20%), but are nearly absent 
from boreal forests (<1%) (Figs. 3a and 4). The decline in N-fixer tree 
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abundance with increasing latitude that we observed is also associ-
ated with a previously documented latitudinal shift in the identity of 
nitrogen-fixing microorganisms, from facultative rhizobial N-fixers in 
tropical forests to obligate actinorhizal N-fixers in temperate forests28. 
Our data are not capable of fully disentangling the several hypotheses  
that have previously been proposed to reconcile the nitrogen cycling 
paradox15. However, our results are consistent with the model  
prediction17 and regional empirical evidence19,29,30 that nitrogen-fixing 
trees are particularly important in arid biomes. Based primarily on 
the observed positive nonlinear association of the relative abundance 
of N-fixers with the mean temperature of the hottest month (Fig. 2c), 
our models predict a twofold increase in relative abundance of N-fixers 
when transitioning from humid to dry tropical forest biomes (Fig. 3a).

Although soil microorganisms are a dominant component of forests 
in terms of both diversity and ecosystem functioning5,6,10, identifying 
global-scale microbial biogeographical patterns remains an ongoing 
research priority. Our analyses confirm that Read’s rule—which is 
one of the first proposed biogeographical rules specific to microbial 
symbioses—successfully describes global transitions between myc-
orrhizal guilds. More generally, climate driven turnover among the 
major symbioses between plants and microorganisms represents a 
fundamental biological pattern in the Earth system, as forests tran-
sition from low-latitude arbuscular mycorrhizal through N-fixer to 
high-latitude ectomycorrhizal ecosystems. The predictions of our 
model (available in the Supplementary Data as global raster layers) 
can now be used to represent these critical ecosystem variations in  
global biogeochemical models that are used to predict climate– 
biogeochemical feedback effects within and between trees, soils and the 
atmosphere. Additionally, the raster layer that contains the proportion 
of nitrogen-fixing trees can be used to map potential symbiotic nitro-
gen fixation, which links atmospheric pools of carbon and nitrogen. 
Future work can extend our findings to incorporate multiple plant 
growth forms and non-forested biomes (in which similar patterns are 
likely to exist) to generate a complete global perspective. Our predictive  
maps leverage a comprehensive global forest dataset to generate a 
quantitative global map of forest tree symbioses, and demonstrate how 
nutritional mutualisms are coupled with the global distribution of plant 
communities.
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METHODS
We quantified the relative abundance of tree symbiotic guilds across >1.1 million  
forest census plots combined in the GFBi database, an extension of the plot-
based GFB database31. The GFBi database consists of individual-based data 
that we compiled from all the regional and national GFBi forest-inventory 
datasets, including the French NFI (IGN—French National Forest Inventory, 
raw data, annual campaigns 2005 and following, https://inventaire-forestier.
ign.fr/spip.php?rubrique159, site accessed on 01 January 2015). The stand-
ardized GFBi data frame (that is, tree list) comprises tree identifier (ID)  
(a unique number assigned to each individual tree); plot ID (a unique string 
assigned to each plot); plot coordinates, in decimal degrees of the WGS84 datum; 
tree size, in diameter-at-breast-height; trees-per-hectare expansion factor; year 
of measurement; dataset name (a unique name assigned to each forest inventory 
dataset); and binomial species names of trees.

We checked all species names from different forest inventory datasets for 
errors in three steps. First, we extracted scientific names from original datasets, 
and kept only the names of genus and species (authority names are removed). 
Next, we compiled all the species names into five general species lists (one 
for each continent). Finally, we verified individual species names against 23 
online taxonomic databases using the ‘taxize’ package of the R programming 
language32. We assigned each morphospecies a unique name that comprised the 
genus, the string ‘spp’, followed by the dataset name and a unique number for that 
species. For example, ‘Picea sppCNi1’ and ‘Picea sppCNi2’ represent two differ-
ent species under the genus Picea, observed in the first Chinese dataset (CNi).

We derived plot-level abundance information in terms of species-abundance 
matrices. Each species-abundance matrix consisted of the number of individuals 
by species (column vectors) within individual sample plots (row vectors). In addi-
tion, key plot-level information was also added to the matrices, including plot ID, 
dataset name, plot coordinates, the year of measurement and basal area (that is, the 
total cross-sectional areas (in m2) of living trees per one hectare of ground area).

Tree genera were assigned to a plant family using a plant taxonomy lookup table 
generated by W. Cornwell (hosted on Github, https://github.com/traitecoevo/tax-
onlookup), which uses the accepted taxonomy from ‘The Plant List’ (http://www.
theplantlist.org/). The majority (96.5%) of genera of the species in the GFBi were 
successfully matched to family; for those that could not be assigned, we manually 
checked the genus and species in the GFBi against synonyms from The Plant List. 
Of the 1,038 mismatches that remained after automated assignment to families, 
an additional 440 genera were assigned to family either by updating older genera 
and species names with their more-recent synonyms or by correcting obvious 
misspellings. The remaining 598 entries that could not be matched to family were 
excluded from further analysis.

We used a taxonomically informed approach to assign symbiotic states to plant 
species from the GFBi. Plant species were assigned to one of five symbiotic guilds; 
ectomycorrhizal, arbuscular mycorrhizal, ericoid mycorrhizal, weakly arbuscular 
mycorrhizal or non-mycorrhizal (AMNM) or N-fixer (Supplementary Table 1). 
Although we did not model the relative abundance of ericoid mycorrhizal trees 
(owing to their rarity), we have included a map of their relative abundance from our 
grid (Supplementary Fig. 1). We also include the full species list as Supplementary 
Data; this list includes the columns used to assign species to guilds. We also include 
a list of families and genera assigned to all guilds except the arbuscular mycorrhizal 
guild (Supplementary Tables 2–5), with notes for cases of species of individual gen-
era that were assigned to two guilds simultaneously (for example, Alnus is an N-fixer 
and ectomycorrhizal) or for cases in which species from individual genera were split 
between two different guilds (for example, some Pisonia sp. are AMNM and some 
are ectomycorrhizal). An arbuscular mycorrhizal summary table is excluded from 
the Supplementary Tables for length considerations; this information is available 
as Supplementary Data (file name ‘SymbioticGuildAssignment.csv’).

The taxonomy of species in our inventory was compared with recently published 
literature on the evolutionary history of mycorrhizal symbiosis7,33 and nitrogen 
fixation34–37. For most species, symbiotic status could be reliably assigned at the 
genus (for example, Dicymbe) or family level (for example, Pinaceae). For the few 
groups for which status was unreliable or variable within a genus (for example, 
Pisonia), we conducted additional literature searches.

We assigned species to the ectomycorrhizal category in three stages: first, at 
the family level (for example, Pinaceae); then, at the genus level (for example, 
Dicymbe); and, finally, by using literature searches for genera for which the sta-
tus was unclear (for example, in the genus Pisonia some species are arbuscular 
mycorrhizal and others are ectomycorrhizal). We used a published list38 to sort 
species into the appropriate guild. For the genus Acacia, we followed previous 
work7 by assuming that only endemic Australian species associate with ectomy-
corrhizal fungi (we sorted Acacia species according to provenance using http://
worldwidewattle.com/).

The AMNM category grouped all genera of terrestrial, non-epiphytic plants 
that either lack arbuscular mycorrhizal fungi or have low or inconsistent records 

of arbuscular mycorrhizal fungi colonization of roots. For example, although 
there are some published records of arbuscular mycorrhizal fungi colonization 
in the roots of plants of the Proteaceae family, these records are inconsistent and  
colonization is generally low. Further, as Proteaceae are associated with a non- 
mycorrhizal root morphology (the cluster or proteoid root system) that allows 
them to access otherwise unavailable forms of soil nutrients39, we placed the entire 
family within AMNM. The family Urticaceae (which we also characterized as 
AMNM) was problematic—early successional species from tropical forests, such 
as those in the genus Cecropia, have records of both low and absent arbuscular  
mycorrhizal fungi colonization40. Our approach was to use the most broadly inclusive  
categorization for AMNM plants.

N-fixer status was assigned at the genus level, using previously compiled 
databases of global symbiotic N2 fixation34–37. Given that symbiotic N2 fixation 
with rhizobial or Frankia bacteria has evolved only in four orders (Rosales, 
Cucurbitales, Fabales and Fagales)41, all species outside of this nitrogen-fixing 
clade were assigned non-fixing status. Some species could not be assigned 
an N-fixer status because they were typed to a higher taxonomic level (for 
example, family) that is ambiguous from the perspective of N-fixer status. 
We recorded when our assignment of N-fixer status was based on phyloge-
netic criteria, but where symbiotic nitrogen fixation is evolutionarily labile. 
Because these cases are more likely to be mis-assigned, we excluded them from 
the nitrogen-fixation category. The N-fixer group contains species that are 
colonized by arbuscular mycorrhizal fungi (for example, most genera from 
Leguminosae) and others that are colonized by ectomycorrhizal fungi (for 
example, Alnus sp.).

Most plant species form arbuscular mycorrhizal symbioses, the basal symbiotic 
state relative to the later-derived ectomycorrhizal and nitrogen-fixing symbioses. 
Furthermore, many ectomycorrhizal and nitrogen-fixing plants maintain the 
ability to form arbuscular mycorrhizal symbioses. Thus, a tree species is most 
likely to be arbuscular mycorrhizal if it does not form associations with another 
symbiotic guild (or forgoes root symbiosis entirely), as evidenced by its inclusion 
in exhaustive databases of plant symbiotic state7,33–37,40. In keeping with other 
large-scale studies in the field33, we assigned tree species from the GFBi data-
base an arbuscular-mycorrhizal-exclusive state if they belonged to taxa that were 
not matched to ectomycorrhizal, ericoid mycorrhizal, AMNM or N-fixer sym-
bioses. Thus, the arbuscular mycorrhizal and N-fixer groups in our dataset are 
non-overlapping, despite the fact that most N-fixers also associate with arbuscular 
mycorrhizal fungi.

The proportions of tree basal area and tree individuals were aggregated to 
a 1°-by-1° grid by taking the weighted average of the plot-level proportions 
(Supplementary Table 6). This resulted in a total of 2,768 grid cells, each with a 
score for the proportional abundance of ectomycorrhizal, arbuscular mycorrhizal, 
N-fixer, ericoid mycorrhizal and AMNM trees. We calculated two measures of 
relative abundance for each symbiotic guild: the proportion of tree stems and the 
proportion of tree basal area. Because the measurements are highly correlated with 
one another (Supplementary Fig. 2), we chose to model only the proportion of 
total tree basal area, which should scale more closely to proportion of tree biomass 
as it accounts for differences in size among individual stems. Additionally, we 
quantified variability among plots within each grid cell by calculating the weighted 
standard deviation across the grid (Supplementary Information, Supplementary 
Figs. 3, 4).

To identify the key factors that structure symbiotic distributions, we assem-
bled 70 global predictor layers: 19 climatic indices (relating to annual, monthly 
and quarterly temperature and precipitation variables), 14 soil chemical indices 
(relating to total soil nitrogen density, microbial nitrogen, C:N ratios and soil 
phosphorus fractions, pH and cation exchange capacity), 5 soil physical indi-
ces (relating to soil texture and bulk density), 26 vegetative indices (relating 
to leaf area index, total stem density, enhanced vegetation index means and 
variances) and 5 topographic variables (relating to elevation and hillshade) 
(Supplementary Table 7). Because decomposition is the dominant process by 
which soil nutrients become available to plants, we generated five additional 
layers that estimate climatic control of decomposition. We parameterized decom-
position coefficients according to the Yasso07 model20,42, using the following 
equation: k = exp(0.095T − 0.00014 × T2) × (1 − exp[−1.21 × P]), in which 
P and T are precipitation and mean temperature (either quarterly or annually) 
of a grid cell, and the constants 0.095, 0.00014 and −1.21 are parameters that 
were fit using a previous global study of leaf litter mass loss20. Although local 
decomposition rates can vary considerably based on litter quality or microbial 
community composition43, climate is the primary control at the global scale20. 
Decomposition coefficients describe how fast different chemical pools of leaf 
litter lose mass over time, relative to a parameter (α) that accounts for leaf chem-
istry. Decomposition coefficients (k) with values of 0.5 and 2 indicate a halving 
and doubling of decomposition rates, respectively, relative to α (Supplementary 
Information, Supplementary Fig. 5).

https://inventaire-forestier.ign.fr/spip.php?rubrique159
https://inventaire-forestier.ign.fr/spip.php?rubrique159
https://github.com/traitecoevo/taxonlookup
https://github.com/traitecoevo/taxonlookup
http://www.theplantlist.org/
http://www.theplantlist.org/
http://worldwidewattle.com/
http://worldwidewattle.com/
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We implemented the random-forest algorithm using the ‘randomForest’ pack-
age in R. Random-forest models average over multiple regression trees, each of 
which uses a random subset of all the model variables to predict a response. We 
first determined the influence and relationship of all 75 predictor layers on forest 
symbiotic state, and then optimized our models using a stepwise reduction in 
variables from least to most important. Variable importance was measured in two 
ways: increase in node purity and percentage increase in MSE (with values reported 
in Fig. 2). The increase in node purity of variable x considers the decrease in the 
residual sum of squares that results from splitting regression trees using variable x. 
The percentage increase in MSE quantifies the increase in model error as a result of 
randomly shuffling the order of values in the vector x. We chose to rank variables 
according to the increase in node purity because we found that higher increases 
in node purities were associated with larger effect sizes, whereas larger percent-
age increases in MSE were associated with more-linear responses with smaller 
effect sizes. Whereas our inspection of partial feature contributions is derived 
from univariate random-forest models, we additionally ran multivariate random 
forests that predict the proportional abundance of ectomycorrhizal, arbuscular 
mycorrhizal and N-fixer trees for each pixel. The multivariate models were run 
using 50 regression trees each, with the unique set of the best 4 predictor variables 
for each symbiotic guild in the univariate models (Fig. 2, Supplementary Table 7). 
Despite strong negative correlations between the proportions of ectomycorrhizal 
and arbuscular mycorrhizal basal area (Supplementary Fig. 22), the results from 
multivariate and univariate random forests are strongly correlated with one another 
(Supplementary Fig. 23).

Using model selection based on eliminating variables with a low increase in 
node purity, we removed most soil nutrient, vegetative and topographic varia-
bles from our models (Supplementary Figs. 6, 7). Our final models include the 
remaining 34 predictor layers with climate, decomposition and some soil physical 
and chemical information (Supplementary Fig. 8). To determine the parsimony 
of our models, we compared the coefficient of determination in models run with 
a stepwise reduction in the number of variables (starting with those with the 
lowest increase in node purity). Based on performance of the ratio of coeffi-
cient of determination in models with 4 versus 34 variables, we determined that 
the 4 most-important variables accounted for >85% of the explained variability 
(Supplementary Fig. 9). We also compared model performance visually with 
plots of actual versus predicted proportions of each tree symbiotic guild among 
continents and geographical subregions (Supplementary Fig. 10). We used the 
‘forestFloor’ package in R to plot the partial variable response of tree symbiotic 
guilds to each predictor variable (Fig. 2a–c, see Supplementary Figs. 19–21 for 
partial plots of the partial feature contributions of all 34 variables).

To test the sensitivity of model performance and predictions, we performed 
cross-validation in R using the ‘rfUtilities’ package44. K-fold cross-validation tests 
the sensitivity of model predictions to losing random subsets from the train-
ing data. For ectomycorrhizal, arbuscular mycorrhizal and N-fixer models, we 
ran 99 iterations that withheld 10% of the model training data. We assessed the 
decrease in model performance in the 99 iterations by manually calculating the 
coefficient of determination, which uses the following formula: 1 − Σ(actual per-
centage basal area – predicted percentage basal area)2/Σ(actual percentage basal 
area − mean actual percentage basal area)2. For all symbiotic guilds, withholding 
10% of the training data resulted in a mean loss in variance explained of less than 
1% (Supplementary Fig. 11). This shows that our training data have sufficient 
redundancy to ensure that our model conclusions are robust. Similarly, to deter-
mine whether our random-forest models would make similar predictions if data 
were equally distributed among continents, we rarefied our aggregated grid of 
symbiotic states and predictor layers to an even depth. Specifically, we sub-sampled 
all continents—North America (including Central America and the Caribbean), 
South America, Europe, Asia and Oceania—to match the number of grid pixels 
from Africa (n = 50). This is a much more aggressive reduction of training data 
than is typically used in K-fold cross-validations, as it involves dropping ~90% of 
training data rather than retaining the same amount. We performed 99 iterations 
of rarefaction each for the three symbiotic guilds. On average, models run with 
the rarefied data explained about 10% less variance over the full training data (the 
entire predictor/response grid) than did models run with all of the training data 
(Supplementary Figs. 12, 13).

To avoid projecting our random-forest models outside the ranges of their 
training data (for example, grid cells with higher mean annual temperatures 
than the maximum used to fit the models), we subset a global grid of predictor 
layers depending on whether (1) the grid cell fell within the top 60% of land 
surface with respect to tree stem density11 and either (2) fell within the univar-
iate distribution of all the predictor layers from our training data and/or (3) fell 
within an 8-dimensional hypervolume defined by the unique set of the 4 best 
predictors of the relative abundance of each guild (Supplementary Fig. 14). We 
then projected our models across only those grid cells that met these criteria, 
which constitutes 46% of the global land surface and 88% of global tree stems 

(Fig. 1, Supplementary Fig. 15). Model projections were made at two resolutions: 
1°-by-1° and 0.5°-by-0.5° (Fig. 4). Although model validation indicates that our 
projections are robust, additional studies to ground-truth these predictions and 
identify any discrepancies would be valuable. If such discrepancies exist, they can 
help to fine-tune climate–symbiosis models, or identify areas in which climate 
might favour invasion by symbioses that have not yet evolved in or dispersed to 
a particular biogeographical region.

We used the following equation to estimate the percentage of global tree stems 
that belong to each tree symbiotic guild: Σi((predicted proportion of trees of 
guild g in pixel i) × (total number of tree stems in pixel i))/Σi(total number 
of tree stems in pixel i). The proportion of tree stems and the proportion of 
tree basal area in each guild are highly correlated throughout the training data 
(Supplementary Fig. 4). The figures cited in the main text for each guild were 
calculated using model projections across all pixels, even those that did not meet 
the criteria for model projection because they fell outside the multivariate dis-
tribution of the predictor layers or had insufficient stem density. However, our 
estimates for the global percentage of trees occupied by each tree symbiotic guild 
change by <1% when using only those pixels that met our criteria for model 
projection.

In the main text, we state that sharp transitions between dominant sym-
biotic states with climate variables could lead to declines in ectomycorrhizal 
trees, particularly in the southern range limit of the northern boreal forests. 
To determine this, we projected our random-forest models for each symbi-
otic guild using climate-change projections over our 19 bioclimatic variables 
(Supplementary Table 7), including the decomposition coefficients that use tem-
perature and precipitation values. Specifically, we considered the 2070 scenario  
with a relative concentration pathway of 8.5 W per m2, which predicts an 
increase of greenhouse gas emissions throughout the twenty-first century45. 
We plot the difference in the proportion of forest basal area between the pro-
jections for 2070 and projections that use current climate data (Supplementary 
Table 7, Supplementary Fig. 24). We qualify this prediction with the note that 
vegetative changes to forests are constrained by rates of mortality, recruitment 
and growth.

After training and cross-validating our models with GFBi data exclusively, 
we additionally tested whether our models accurately predicted the previously 
published46 symbiotic state of Eurasian forests. We assigned symbiotic status to 
all of the trees in this previous publication, and aggregated plot-level data to a 
1°-by-1° grid using the same methods as with the GFBi dataset (Supplementary 
Fig. 25). We found that—on average—our models predicted the symbiotic state 
in the regional dataset within 13.6% of the value of this previously published data-
set (Supplementary Fig. 26). For projected maps in Fig. 4a–c, we included the 
previously published46 data with the GFBi training data to increase geographical 
coverage throughout Eurasia.
Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this paper.

Data availability
Information regarding symbiotic guild assignments, model selection (including 
global rasters of our model projections for ectomycorrhizal, arbuscular myc-
orrhizal and N-fixer proportion of tree basal area) and analyses is available as 
Supplementary Data. The GFBi database is available upon written request at 
https://www.gfbinitiative.org/datarequest. Any other relevant data are available 
from the corresponding authors upon reasonable request.
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