The next generation of
ecosystem science.

Understanding and addressing global climate change and biodiversity loss requires an ecologically-informed knowledge of Earth system dynamics.  

Addressing
climate change

We research how to most effectively implement nature-based solutions.  

Understanding
climate change

We use this global data to predict how global ecosystems will change into the future.

Global
Ecology

We conduct Global Ecological Monitoring (GEM), classifying global systems by pairing top-down satellite imagery with our ground-sourced data sets of forest tree and soil biodiversity – the largest in the world. We compile the data we gather into interactive maps to inform stakeholders about the ecological diversity of their selected environment.

Fundamental
Ecology

We address local scale fundamental ecological research questions from different angles in order to gain a holistic view.

Project Overview

Untangling the wood wide web

In order to fully understand the functioning of forest systems, we must understand the symbiotic soil microorganisms supporting the nutrient supply to trees. These microorganisms influence the ability of ecosystems to sequester carbon and to withstand the impacts of climate change. Yet, until recently, little was known about their distributions at a global scale. Through a long-term collaboration with Stanford University, our researchers have generated the first spatially explicit map of the most abundant of these symbionts, mycorrhizal fungi. This map provides some critical insights into which types of trees can be supported in which regions. But it also help us understand how the climate will change over the rest of the century. 

Want to learn more? Click here to visit our interactive pageflow and watch the video.

Published in Nature (16. May 2019)

A fragile balance

Over the past century, fossil fuels and farming fertilisers have increased the amount of nitrogen, phosphorus and potassium in soils, not only in agricultural areas, but all across the globe. It is expected that these increased levels of nutrients should stimulate plant growth and therefore enhance carbon capture from the atmosphere. However, until recently, there was no scientific evidence to support this. In collaboration with the Nutrient Network our researchers have analysed the changes in soil carbon storage at a global scale. Our maps not only indicate which ecosystems are able to store more carbon under nutrient enrichment, but also help us to improve Earth system models that allow us to predict the rate of climate change.

Want to learn more? Click here to visit our interactive pageflow and watch the video.

Published in Ecology Letters (18. March 19)

List of Publications

2019
  • Steidinger, B.S., Crowther, T.W., Liang, J., Van Nuland, M.E., Werner, G.D.A., Reich, P.B., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., GFBI consortium, Peay, K.G. Nature (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses.
  • Crowther, T.W., Riggs, C., Lind, E.M., Borer, E.T., Seabloom, E.W., Hobbie, S.E., Wubs, J., Adler, P.B., Firn, J., Gherardi, L., Hagenah, N., Hofmockel, K.S., Knops, J.M.H., McCulley, R.L., McDougall, A., Peri, P.L., Prober, S.M., Stevens, C.J., Routh, D. Ecology Letters (2019) 6 : 22. Sensitivity of global soil carbon stocks to combined nutrient enrichment.
  • Maynard, D.S., Bradford, M.A., Covey, K.R., Lindner, D., Glaeser, J., Talbert, D.A., Tinker, P.J., Walker, D.M., Crowther, T.W. Nature Microbiology (2019) 4. Consistent trade-offs in fungal trait expression across broad spatial scales.
  • Bradford, M.A., McCulley, R.L., Crowther, T.W., Oldfield, E.E., Wood, S.A., Fierer, N. Nature Ecology & Evolution (2019) 3 : 223. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaption.
2018
  • Smith, J.R., Letten, A.D.L., Ke, P.-J., Anderson, C.B., Hendershot, J.N., Dhami, M.K., Dlott, G.A., Grainger, T.N., Howard, M.E., Morrison, B.M.L., Routh, D., Priscilla, A.S.J., Mooney, H.A., Mordercai, E.A., Crowther, T.W., Daily, G.C. Nature Ecology & Evolution (2018) 2 (12): 1889. A global test of ecoregions.
  • Bastida, F., Crowther, T.W., Prieto, I., Routh, D., García, C., Jehmlich, N. Science of the Total Environment (2018) 640: 18-21. Climate shapes the protein abundance of dominant soil bacteria.
  • Oldfield, E.E., Crowther, T.W., Bradford, M.A., Soil Biology and Biochemistry (2018) 124: 218-226. Substrate identity and amount overwhelm temperature effects on soil carbon formation.
  • Walker, D.M., Murray, C.M., Talbert, D., Tinker, P., Graham, S.P., Crowther, T.W. FEMS Microbiology Ecology (2018) 94 (12): fiy168. A salamander’s top down effect on fungal communities in a detritivore ecosystem.
  • Culina, A., Crowther, T.W., Ramakers, J.J.C., Gienapp, P., Visser, M.E. Nature Ecology & Evolution (2018) 2 (7): 1053. How to do meta-analysis of open datasets.
  • Todd-Brown, K., Zheng, B., Crowther, T.W. Biogeosciences (2018) 15 (12): 3659-3671. Field-warmed soil carbon changes imply high 21st-century modeling uncertainty.
  • Soliveres, S., Lehman, A., Boch, S., Altermatt, F., Carrara, F., Crowther, T.W., Delgado-Baquerizo, M., Kempel, A., Maynard, D.S., Rillig, M.C., Singh, B.K., Trivedi, P., Allan, E. Journal of Ecology (2018) 106 (3): 852-864. Intransitive competition is comon across five major taxonomic groups and is driven by productivity, competitive rank and functional traits.
  • Maynard, D.S., Covey, K.R., Crowther, T.W., Sokol, N.W., Morrison, E.W., Frey, S.D., Van Diepen, L.T.A., Bradford, M.A. Ecology (2018) 99 (4): 801-811. Species associations overwhelm abiotic conditions to dictate the structure and function of wood‐decay fungal communities.
  • Crowther, T.W., Boddy, L., Maynard, D.S. Fungal Ecology (2018) 32: 87-91. The use of artificial media in fungal ecology.
  • Culina, A., Baglioni, M., Crowther, T.W., Visser, M.E., Woutersen-Windhouwer, S., Manghi, P. Nature Ecology & Evolution (2018) 2 (3): 420. Navigating the unfolding open data landscape in ecology and evolution.
  • Glick, H.B., Bettigole, C., Maynard, D.S., Covey, K.R., Smith, J.R., Crowther, T.W. Proceedings of the National Academy of Sciences (2018) 115 (8): 1848-1853. Group: Integrated Natural Resources Modelling and Management.
  • Crowther, T.W., Machmuller, M.B., Carey, J.C., Allison, S.D., Blair, J.M., Bridgham, S.D., Burton, A.J., Dijkstra, F.A., Elberling, B., Estiarte, M., Larsen, K.S., Laudon, H., Lupascu, M., Marhan, S., Mohan, J., Niu, S., Peñuelas, J.J., Schmidt, I.K., Templer, P.H., Kröel-Dulay, G., Frey, S.D., Bradford, M.A. Nature (2018) 554 (7693): E7. More data but no new answers.
  • Crowther, T.W., Hartmann, H., Schuldt, B., Sanders, T.G.M., Macinnis‐Ng, C., Boehmer, H.J., Allen, C.D., Bolte, A., Hansen, M.C., Medlyn, B.E., Ruehr, N.K., Anderegg, W.R.L. New Phytologist (2018) 217 (3): 984-987. Monitoring global tree mortality patterns and trends. Report from the VW symposium ‘Crossing scales and disciplines to identify global trends of tree mortality as indicators of forest health.
  • Crowther, T.W., Ramirez, K.S., Knight, C.G., De Hollander, M., Brearley, F.Q., Constantinides, B. + 30 authors. Nature Microbiology (2018) 3 (2): 189. Detecting macroecological patterns in bacterial communities across independent studies of global soils.
  • Goymer, P., Finkbeiner, F., Crowther, T.W. Nature Ecology & Evolution (2018): 1. A trillion trees.
  • Dawson, S.K., Boddy, L., Halbwachs, H., Bässler, C., Andrew, C., Crowther, T.W., Heilmann-Clausen, J., Nordén, J., Ovaskainen, O., Jönsson, M. Functional Ecology (2018) 33 (3): 372-387. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi.
2017
  • De Desnoues, E., Ferreira de Carvalho, J., Zohner, C.M., Crowther, T.W. Forest Ecosystems (2017) 4 (1): 26. The relative roles of local climate adaptation and phylogeny in determining leaf-out timing of temperate tree species.
  • Harvey, J.A., Van den Berg, D., Ellers, J., Kampen, R., Crowther, T.W+., Roessingh, P., Verheggen, B., Nuijten, R.J.M., Post, E., Lewandowsky, S., Stirling, I., Balgopal, M., Amstrump, S.C., Mann, M.E. Bioscience (2017) 68 (4): 281-287. Internet Blogs, Polar Bears, and Climate-Change Denial by Proxy.
  • Maynard, D.S., Crowther, T.W., Bradford, M.A. Procee dings of the National Academy of Sciences (2017) 114 (43): 11464-11469. Competitive network determines the direction of the diversity-function relationship.
  • Ellers, J., Crowther, T.W., Harvey, J.A. Journal of Scholarly Publishing (2017) 49 (1): 89-102. Gold open access publishing in mega-journals: Developing countries pay the price of western premium academic output.
  • Aguilar-Trigueros, C.A., Rillig, M.C., Crowther, T.W. The ISME Journal (2017) 11 (10): 2175. Applying allometric theory to fungi.
  • Rubenstein, M.A., Crowther, T.W., Maynard, D.S., Schilling, J.S., Bradford, M.A. Soil Biology and Biochemistry (2017) 112: 110-116. Decoupling direct and indirect effects of temperature on decomposition.
  • Maynard, D.S., Bradford, M.A., Lindner, D.L., Van Diepen, L.T.A., Frey, S.D., Glaeser, J.A., Crowther, T.W. Nature Ecology & Evolution (2017) 1 (6): 1-8. Diversity begets diversity in competition for space.
  • Talbert, D.A., Tinker, P., Crowther, T.W., Walker, D. The Thirtieth International Flairs Conference (2017). Using Machine learning to understand top-down effects in an ecosystem: Opportunities, challenges, and lessons learned.
  • Maynard, D.S., Crowther, T.W., Bradford, M.A. Ecology Letters (2017). Fungal interactions reduce carbon use efficiency.
  • Crowther, T.W. Proceedings of the Global Symposium on Soil Organic Carbon (2017). Quantifying the losses of soil carbon in response to warming at a global scale.
  • Maynard, D.S., Crowther, T.W., Bradford, M.A. PNAS (2017), 114 (43): 11464-11469: The competitive network determines the diversity-function relationship in an antagonistic fungal community.
  • Ramirez, K.S., Knight, C.G., Hollander, M.H., Brearlet, F.Q. Constantinides, B. Constantinides, T.E. Cotton, A., Creer, S.I., Crowther, T.W., +20 authors. Nature Microbiology (2017) 3: 189-196. Detecting macroecological patterns in bacterial communities across independent studies of global soils.
2016
  • Barrett, C.B., Zhou, M., Reich, P.B., Crowther, T.W., Liang, J.J. Science (2016) 354 (6319): 1541-1542. Forest value: More than commercial.
  • Crowther, T.W., Todd-Brown, K.E.O., Rowe, C.W., Wieder, W.R., Carey, J.C., Machmuller, M.B., Snoek, B.L., Fang, S. + 42 authors. Nature (2016) 540 (7631): 104. Quantifying global soil carbon losses in response to warming.
  • Carey, J.C., Tang, J., Templer, P.H., Kroeger, K.D., Crowther, T.W., Burton, A.J., Dukes, J.S., Emmett, B., Frey, S.D. + 35 authors. Proceedings of the National Academy of Sciences (2016) 113 (48): 13797-13802. Temperature response of soil respiration largely unaltered with experimental warming.
  • Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.-D., McGuire, A.D., Bozzato, F. + 75 authors. Science (2016) 354 (6309): 196. Positive biodiversity-productivity relationship predominant in global forests.
  • Glick, H.B., Bettigole, C., Maynard, D.S., Covey, K.R., Smith, J.R., Crowther, T.W. Scientific Data (2016) 3: 160069. Spatially-explicit models of global tree density.
  • Bradford, M.A., Wieder, W.R., Bonan, G.B., Fierer, N., Raymond, P.A., Crowther, T.W. Nature Climate Change (2016) 6 (8): 751. Managing uncertainty in soil carbon feedbacks to climate change.
  • Van der Wal, A., Klein Gunnewiek, P.J.A., Cornelissen, J.H.C., Crowther, T.W., De Boer, W. Ecosphere (2016) 7 (7): e01393. Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs.
  • Covey, K.R., Bueno de Mesquita, C.P., Oberle, B., Maynard, D.S., Bettigole, C., Crowther, T.W., Duguid, M.C., Steven, B., Zanne, A.E., Lapin, M., Ashton, M.S., Oliver, C.D., Lee, X., Bradford, M.A. Biogeochemistry (2016) 130 (3): 215-266. Greenhouse trace gases in deadwood.
2015
  • Crowther, T.W., H.B. Glick, K.R. Covey. et al. (2015). Nature (2015) 525 (7598): 201-205. Mapping tree density on a global scale.
  • Crowther, T.W., Thomas, S.M., Maynard, D.S., Baldrian, P., Covey, K.R., Frey, S.D., van Diepen, L.T.A. & Bradford, M.A. PNAS (2015), 112: 7033-7038. Biotic interactions mitigate soil microbial feedbacks to climate change.
  • Crowther, T.W., Sokol, N.W., Maynard, D.S., Oldfield, E.E.*, Thomas, S.D. & Bradford, M.A. Soil Biology & Biochemistry (2015), 85: 153–161. Environmental stress response limits fungal necromass contributions to soil organic matter.
  • Maynard, D.S., Crowther, T.W., King, J.R., Warren, R.J., Bradford, M.A. Ecological Entomology (2015) 40: 199-210. Temperate forest termites: Ecology, biogeography, and ecosystem impacts.
  • Thomas, S.M., Crowther, T.M. Journal of Animal Ecology (2015) 84 (3): 861-870. Predicting rates of isotopic turnover across the animal kingdom: A synthesis of existing data.
  • Crowther, T.W., Grossart, H.-P. in T.C. Hanley and K.J. La Pierre (eds): Trophic Ecology: Bottom-Up and Top-Down Interactions Across Aquatic and Terrestrial Systems. Cambridge University Press. Cambridge, UK. : 260-287. The role of bottom-up and top-down interactions in determining microbial and fungal diversity and function.
  • Crowther, T.W., Maynard, D.S., Thomas, S.M., Baldrian, P., Covey, K.R., Frey, S.D., Van Diepen, L.T.A., Bradford, M.A. Proceedings of the National Academy of Sciences (2015) 112 (37): e5114. Overdependence on “significance” testing in biology.
  • Oldfield, E.E., Felson A.J., Novem Auyeung, D.S., Crowther, T.W:, Sonti, N.F., Harada, Y., Maynard, D.S., Sokol, N.W., Ashton, M.S., Warren, R.J., Hallett, R.A., Bradford, M.A. Restoration Ecology (2015) 23 (5): 707-718. Growing the urban forest: Tree performance in response to biotic and abiotic land management.
  • Pelini. S.L., Maran, A.M., Chen, A.R., Kaseman, J., Crowther, T.W. PLoS ONE (2015) 10 (8): e0136344. Higher Trophic Levels Overwhelm Climate Change Impacts on Terrestrial Ecosystem Functioning.
  • Maynard, D.S., Leonard, K.E., Drake, J.M., Hall, D.W., Crowther, T.W., Bradford, M.A. Proc. R. Soc. B (2015) 282 (1811): 20150516. Modelling the multidimensional niche by linking functional traits to competitive performance.
  • Crowther, T.W., Sokol, N.W., Oldfield, E.E., Maynard, D.S., Thomas, S.M., Bradford, M.A. Soil Biology and Biochemistry (2015) 86: 153-161. Environmental stress response limits microbial necromass contributions to soil organic carbon.
  • Wood, C., Burnley, T., Patwardhan, A., Scheres, S., Topf, M., Roseman, A., Winn, M. Acta. Cryst. (2015) 71 (1): 123-126. Collaborative Computational Project for Electron cryo-Microscopy.
2014
  • Ramirez, K.S., Leff, J.W., Barberán, A., Bates, S.T., Betley, J., Crowther, T.W., Kelly, E.F., Oldfield, E.E., Shaw, E.A., Steenbock, C., Bradford, M.A., Wall, D.H., Fierer, N. Proc. R. Soc. B (2014) 281 : 20141988. Biogeographic Patterns in Below-Ground Diversity in New York City’s Central Park are Similar to Those Observed Globally.
  • Crowther, T.W., Maynard, D.S., Leff, J.W., Oldfield, E.E., McCulley, R.L., Fierer, N., Bradford, M.A. Global Change Biology (2014) 20 : 2983. Predicting the Responsiveness of Soil Biodiversity to Deforestation: A Cross‐Biome Study.
  • Bradford, M.A., Warren R.J. II, Baldrian, P., Crowther, T.W., Maynard, D.S., Oldfield, E.E., Wieder, W.R., Wood, S.A., King J.R. Nature Climate Change (2014) 4 : 625. Climate Fails to Predict Wood Decomposition at Regional Scales.
  • Dray, M.W., Crowther, T.W., Thomas S.M., A’Bear, A.D., Godbold, D.L., Ormerod, S.J., Hartley, S.E., Jones, T.H. PLoS ONE (2014) 9: e86246. Effects of Elevated CO2 on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses.
  • Crowther, T.W., Maynard, D.S., Crowther, T.R., Peccia, J., Smith, J.R., Bradford, M. A. Frontiers in Microbiology (2014) 5 : 579. Untangling the Fungal Niche: The Trait-Based Approach.
2013
  • Bradford M.A., & Crowther, T. W. New Phytologist (2013) 199 : 7. Carbon use efficiency and storage in terrestrial ecosystems.
  • A’Bear A.D., Crowther, T.W., Ashfield, R., Chadwick, D.D.A., Dempsey, J., Meletiou, L., Rees, C.L., Jones, T.H., Boddy, L. Fungal Ecology (2013) 6 : 137. Localised invertebrate grazing moderates the effect of warming on competitive fungal interactions.
  • Crowther, T.W. & Bradford, M.A. Ecology Letters (2013) 16 : 469. Thermal acclimation in widespread heterotrophic soil microbes.
  • Bradford M.A., & Crowther, T. W. (2013) Carbon use efficiency and storage in terrestrial ecosystems. New Phytologist, 199, 7-9.
  • Crowther, T.W., Stanton, D., Thomas, S., A’Bear A.D., Hiscox, J., Jones, T.H., Voříšková, J., Baldrian, P. & Boddy, L. Ecology (2013) 94: 251. Top-down control of soil fungal community composition by a globally distributed keystone species.
2012
  • Crowther, T.W., Littleboy, A., Jones, T.H. & Boddy, L. FEMS Microbiology Ecology (2012) 81: 419. Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions.
  • Crowther, T.W. & A’ Bear, A.D. Fungal Ecology (2012) 5 : 277. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent.
  • Crowther, T.W., Jones, T.H. & Boddy, L. Mycology (2012) 3 : 77. Interactions between saprotrophic basidiomycete mycelia and mycophagous soil fauna.
  • Crowther, T.W., Boddy, L. & Jones, T.H. The ISME Journal (2012) 6 : 1992. Functional and ecological consequences of saprotrophic fungus-grazer interactions.
2011
  • Tordoff, G.M., Chamberlain, P.M., Crowther, T.W., Black, H.I.J., Jones, T. H., Stott, A. & Boddy, L. Soil Biology and Biochemistry (2011) 43 : 2338. Invertebrate grazing affects nitrogen partitioning in the saprotrophic fungus Phanerochaete velutina.
  • Crowther, T.W., Boddy, L. & Jones, T.H. Ecology Letters (2011) 14 : 1134. Outcomes of fungal interaction are determined by soil invertebrate grazers.
  • Crowther, T.W., Jones, T.H., Boddy, L. & Baldrian, P. Soil Biology and Biochemistry (2011) 43 : 2060. Invertebrate grazing determines enzyme production by basidiomycete fungi.
  • Crowther, T.W., Jones, T.H. & Boddy, L. Fungal Ecology (2011) 5 : 333. Species-specific effects of grazing invertebrates on mycelial emergence and growth from woody resources into soil.
  • Crowther, T.W., Boddy, L. & Jones, T.H. Oecologia (2011) 167 : 535. Species-specific effects of soil fauna on fungal foraging and decomposition.