Publications

Ten years to restore a planet. Mrema, E. M. et al. (2020) One Earth. doi: 10.1016/j.oneear.2020.11.015
Recent deforestation drove the spike in Amazonian fires Cardil, A. et al. (2020). Environmental Research Letters. doi: 10.1088/1748-9326/abcac7
Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees Zohner, C. M., Mo, L., Pugh, T. A. M., et al. (2020) Global Change Biology. doi: 10.1111/gcb.15098
Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia Zohner, C. M., Mo, L., Renner, S. S., et al. (2020) Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1920816117
A trait-based understanding of wood decomposition by fungi Lustenhouwer, N. et al. (2020). Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1909166117
Global distribution of earthworm diversity Phillips, H. R. P. et al. (2019). Science. doi: 10.1126/science.aax4851  
The global soil community and its influence on biogeochemistry Crowther, T. W., Hoogen, J. van den, et al. (2019). Science. doi: 10.1126/science.aav0550
The global tree restoration potential Bastin, J.-F., Finegold, Y., et al. (2019). Science. doi: 10.1126/science.aax0848
Scientists’ warning to humanity: microorganisms and climate change Cavicchioli, R. et al. (2019). Nature Reviews Microbiology. doi: 10.1038/s41579-019-0222-5
A global test of ecoregions Smith, J. R. et al.(2018). Nature Ecology & Evolution. doi: 10.1038/s41559-018-0709-x
Climate shapes the protein abundance of dominant soil bacteria Bastida, F. et al. (2018). The Science of the Total Environment. doi: 10.1016/j.scitotenv.2018.05.288  
Substrate identity and amount overwhelm temperature effects on soil carbon formation Oldfield, E. E., Crowther, T. W. and Bradford, M. A. (2018). Soil Biology and Biochemistry. doi: 10.1016/j.soilbio.2018.06.014
How to do meta-analysis of open datasets. Culina, A., Crowther, T. W., et al. (2018). Nature Ecology & Evolution. doi: 10.1038/s41559-018-0579-2
The use of artificial media in fungal ecology Crowther, T. W., Boddy, L. and Maynard, D. S. (2018). Fungal Ecology. doi: 10.1016/j.funeco.2017.10.007
Navigating the unfolding open data landscape in ecology and evolution Culina, A., Baglioni, M., et al. (2018). Nature Ecology & Evolution. doi: 10.1038/s41559-017-0458-2
A trillion trees Goymer, P. (2018). Nature Ecology & Evolution. doi: 10.1038/s41559-018-0464-z
A test of the hierarchical model of litter decomposition Bradford, M. A. et al. (2017). Nature Ecology & Evolution. doi: 10.1038/s41559-017-0367-4  
Competitive network determines the direction of the diversity–function relationship Maynard, D. S., Crowther, T. W. and Bradford, M. A. (2017). Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1712211114    
Fungal interactions reduce carbon use efficiency Maynard, D. S., Crowther, T. W. and Bradford, M. A. (2017). Ecology Letters. doi: https://doi.org/10.1111/ele.12801
Diversity begets diversity in competition for space Maynard, D. S. et al. (2017). Nature Ecology & Evolution. doi: 10.1038/s41559-017-0156
Temperature response of soil respiration largely unaltered with experimental warming Carey, J. C. et al. (2016). Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1605365113